Разделы

Уроки по теме

Рекомендуем




Доноры - детям

Построение линии пересечения конуса и плоскости

Автор: WebMoroz

Дата: 2012-07-27

Сечение конуса наклонной плоскостью

    Вслед за уроком, в котором я рассказывал вам, как построить линию пересечения цилиндра с наклонной плоскостью, пришло время опубликовать статью о построении линии пересечения конуса и наклонной плоскости. Умение построить линию пересечения конуса с плоскостью может пригодится вам при построении натурального вида фигуры сечения или же просто, при решении простой задачи о сечении конуса. В любом случае, в курсе инженерной графики вы как минимум раз с этим столкнетесь. Так пусть же это столкновение пройдет для вас менее болезненно. В противном случае, пишите, звоните, будем договариваться :)

Итак, приступим. На рисунке ниже вы видите среднестатистический чертеж в том виде, в котором вы получаете задание на сечение конуса плоскостью. С той лишь поправкой, что обычно на нем не изображен третий вид. Его я начертил заранее, подготовив для будущих построений.

Построение линии сечения конуса наклонной плоскостью

    Первым делом обозначим точки, в которых плоскость пересекает образующие конуса на фронтальной проекции. Снесем их на горизонтальную проекцию до пересечения с осью, а так же на профильную проекцию - так же до пересечения с осью. Отмечу, что точка 2'' будет невидимой (на рисунке это явно не указано).

Построение линии сечения конуса наклонной плоскостью

    Пришло время сказать кое-какие важные вещи, касаемые того, какие бывают типы сечений конуса. Их четыре:

  • Рассечь конус можно параллельно основанию, тогда при взгдяде на сечение мы увидим круг.
  • Второй случай - параллельно оси конуса. В сечении получим гиперболу.
  • Третий случай - параллельно образующей конуса. В сечении будет парабола.
  • Четвертый случай, он же крайний - как раз наш пример, секущая плоскость наклонена под произвольным углом и не совпадает с первыми тремя частными случаями сечений. И вот в этом, четвертом случае, в сечении будет элипс.

    Но если про элипс в сечении вы скорее всего знали, или догадывались, то вот насчет его центра очень многие ошибаются. Хотя казалось бы, поиск центра элипса в нашем случае не должен доставлять хлопот. Внимательно читаем и запоминаем: центр элипса в данном случае находится ровно посередине между точками 1 и 2. Поскольку 1-2 является одной из осей элипса. Большой или малой - зависит от наклона секущей плоскости и практического значения для нас сейчас не имеет.
    Продолжим построения. Проведем через ту самую середину отрезка 1-2 вспомогательную секущую плоскость Q1. Как мы уже знаем, она как раз дает в сечении окружность при виде сверху. Обозначим ее:

Построение линии сечения конуса наклонной плоскостью

    Обозначим точки пересечения этой вспомогательной плоскости Q1 с проекцией наклонной плоскости Pv на фронтальной проекци, получим точки 3' и 4'. Из них опускаем линию связи вниз, до пересечения с окружностью, получаем точки 3 и 4. Отрезок 3-4 является второй осью элипса.

Построение линии сечения конуса наклонной плоскостью

    Чтобы построить профильные проекции этих точек, проводим из проекции точек 3' и 4' линию связи вправо, на профильную проекцию. И затем, на ней откладываем от оси конуса отрезки, обозначенные синим и зеленым цветом. Такой же длины, как синий и зеленые отрезки обозначенные на виде сверху (на горизонтальной проекции). Получаем точки 3" и 4".

Построение линии сечения конуса наклонной плоскостью

    Математически на основе знаний о двух осях мы могли бы построить элипсы на горизонтальной и профильной проекциях. Но поскольку нам не удастся убедить преподавателя, что мы роботы, способные построить элипс опираясь только на 4 точки, мы вынуждены построить несколько дополнительных точек. На рисунке, изображающем 6-й шаг построения мы провели вспомогательную секущую плоскость Q2, в произвольном месте, где-то посередине между центром элипса и точкой 2'. C ее помощью (ориентируясь на алгоритм описанный при построении точек 3 и 4) определили все проекции точек 5 и 6.

Построение линии сечения конуса наклонной плоскостью

    Точно так же проводим вспомогательную плоскость Q3 ниже точки 3' и выше точки 1' и с ее помощью находим все проекции точек 7 и 8. Теперь у нас уже есть 8 точек, чего вполне достаточно для более-менее точного построения от руки элипса не очень больших размеров. Если же у вас конус большой, то возможно вам имеет смысл провести еще некоторое количество вспомогательных секущих плоскостей и построить дополнительные точки.

Построение линии сечения конуса наклонной плоскостью

    Остался еще один важный момент - определение точек границ видимости элипса на третьем виде. Для этого надо провести из точки пересечения плоскости Pv с осью элипса линию связи направо, на профильную проекцию. В местах, где эта диния пересекается с образующими конуса как раз и будут искомые точки. На чертеже я их никак не обозвал, вы же можете дать им имена 9" и 10". Та часть элипса, что будет за ними, будет находиться за конусом и соответственно будет невидидима.

Построение линии сечения конуса наклонной плоскостью

    Проведем элипсы через полученные точки на горизонтальной и профильных проекциях:

Построение линии сечения конуса наклонной плоскостью

    Последним этапом, завершающим построение линии пеерсечения Конуса с наклонной плоскостью, будет обозначение видимости элипса на профильной проекции:

Построение линии сечения конуса наклонной плоскостью

    На этом месте я объявляю перерыв, и мне лишь остается выразить надежду, что этот урок принес вам реальную пользу при решении своих домашних заданий. Лишь бы было у вас время прочесть весь этот материал и внимательно рассмотреть сопровождающие его рисунки. В блишайшем уроке я планирую рассмотреть выполнение задания по нахождению натуральной величины сечения, так что велкам снова :)

Просмотров: 33976


Вы можете сказать "спасибо!" автору статьи:

пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект "White Bird. Чертежи Студентам"

или запишите наш телефон и расскажите о нас своим друзьям - кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки - и кто-то еще сможет освоить черчение.

А вот это - не реклама. Это напоминание, что каждый из нас может сделать. Если хотите - это просьба. Мы действительно им нужны:

Доноры - детям

Комментарии:

Автор комментария: Ольга
Дата: 2012-10-05

Большое спасибо за подробный пример, но было бы лучше, если бы разобрали сложный пример.

Автор комментария: Василий
Дата: 2012-10-06

Огромнейшее спасибо за изложенный пример. Мне это очень помогло.

Автор комментария: Михаил
Дата: 2012-10-06

Отличный пример! Сэкономил массу времени:)
    Как вижу, урок пришелся вам всем по душе. Молодцы, что не ленитесь читать!

Автор комментария: Анастасия
Дата: 2012-10-28

Как провести элипсы через полученные точки? ( шаг 9)

Автор комментария: Валентина
Дата: 2012-11-19

Огромное спасибо!!!Давно закончила институт, а тут пришлось повспоминать начерталку, чтобы помочь внуку. Все получилось. Еще раз большое спасибо!

Автор комментария: Александр
Дата: 2012-12-09

Что делать если плоскость не частного, а общего положения, да еще и задана треугольником?
    В данном случае один из вариантов - изменить способ задания плоскости. Плоскость заданную треугольником можно задать следами. Второй вариант - смена плоскостей проекций, так, чтоб плоскость встала в частное положение.

Автор комментария: Наталья
Дата: 2012-12-17

Спасибо огромное за данный урок! Мне это очень помогло! По крайней мере свою задачу я кое-как, но все же решила! :) Спасибо еще раз!
Наталья, именно на то и рассчитано - чтоб студенты пытались разобраться. И пусть не так красиво, но зато с пониманием решали бы свои задачи по начертательной геометрии. А там, глядишь, и в других науках придет привычка искать и разбираться. Так держать!

Автор комментария: артем
Дата: 2013-02-23

Вот бы нам так на парах объясняли было бы в разы интереснее

Спасибо, Артем! Уверен, что каждый человек способен рассказывать и понятно, и интересно. Если он влюблен в свое дело.

Автор комментария: Евгений
Дата: 2013-03-24

Присоединяюсь ко всем благодарностям, конечно же, но..)) хотел бы спросить. Для варианта, когда секущая плоскость параллельна одной из образующих, как построить сечение без профильной проекции? Ранее строил такой рисунок без нее, вдобавок смотрю решение этого же рисунка без присутствия профильной проекции (даже стертых следов от карандаша не наблюдаю) %) Если конкретнее, то как на горизонтальной проекции сечения найти расстояние от горизонтальной оси до точек на линии связи, проведенной с фронтальной проекции? Собственно, вот этот начерченный рисунок (если не затруднит, объясните, пожалуйста, для варианта с секущей плоскостью "сигма 2".

Автор комментария: Евгений
Дата: 2013-03-24

Забыл про рисунок. Вот он http://dfiles.ru/files/e83yaz9ys Но, как обычно, после написания сообщения, понял, что необходимо пользоваться радиусами, отмеренными от оси до образующей конуса в месте пересечения вспомогательной плоскости)) но сообщения могут пригодится для таких нерасторопных как я))

Да, это известный способ находить правильное решение по ходу формулирования вопроса :) На всякий случай для всех напишу: В разобранном мной в статье примере третий вид представлен только для полноты картины, поскольку часто просят решить в трех проекциях. Но если третья проекция не нужна - мы ее просто не чертим, работаем только с главным видом и видом сверху.

Автор комментария: Ольга
Дата: 2013-04-01

спасибо огромное

Автор комментария: Willy
Дата: 2013-05-06

Скажите,пожалуйста,сколько радиусы внутренних кругов?

Радиусы внутренних кругов получаются путем переноса по линии связи точек пересечения на фронтальной проекции вспомогательных горизонтальных плоскостей с образующей конуса. Линия связи проводится до линии оси окружности, являющейся горизонтальной проекцией основания конуса.

Автор комментария: доня
Дата: 2013-12-27

огромнейшее спасибо за полезные уроки, что бы я без вас делала

Автор комментария: Татьяна
Дата: 2014-01-06

Большое спасибо за разъяснения. Вы очень помогли.

Автор комментария: Юлия
Дата: 2014-01-21

Действительно большое подспорье для студентов! Ведь не всегда есть возможность достать книги по начертательной геометрии и черчению. Большое, даже сказала бы огромное СПАСИБО!!!! :-)

Юлия, даже боюсь предположить, что бы было, если бы у меня была возможность по-человечески расписать оставшиеся нераскрытыми темы :) Вам спасибо - вы читаете и цените.

Автор комментария: Алексей
Дата: 2014-01-22

Спасибо огромное! Чертить не умею, все чертеж что были необходимы в процессе учебы заказывал... на экзамен дали чертить такое вот задание, и если б не Ваш наглядный и понятно изложенный пример был бы карачун мне! Огромное спасибо, все сделалось очень даже просто :)

Скажите ведь, интересный случай! Алексей, вы молодец.С опозданием - но самостоятельно, с использованием, так сказать, литературы! Если бы все вернуть назад - глядишь - и остальные задания осилили бы :)

Автор комментария: ирина
Дата: 2014-01-24

а если секущая плоскость введена на виде сверху?

Ирина, спасибо за интересный вопрос. Если плоскость введена на виде сверху, то вы делаете те же действия, но наоборот: сначала проводите концентрические окружности - как бы следы от вспомогательных секущих плоскостей, потом из точки пересечения этих окружностей с осью конуса, параллельной оси ох, проводите линии связи наверх, до пересечения с образующей конуса. Из полученной точки проводите горизонтальную секущую плоскость. Вернувшись в вид сверху ищете точки пересечения вашей окружности с линией, задающей сечение. Из нее проводите наверх линию связи, до пересечения с полученной секущей плоскостью. Это уже будет точка принадлежащая линии пересечения. Самое интересное: как найти самую ближнюю к оси конуса, самую высокую точу сечения. Для этого нужно провести на виде сверху перпендикуляр к секущей плоскости. Через полученную точку провести касательную окружность. Это будет самая маленькая из вспомогательных окружностей, обозначающих вспомогательные секущие плоскости. Выполнив с ней все действия, описанные в этом комментарии вы получите на виде сверху самую высокую точку вашей гиперболы.

Автор комментария: Вероника
Дата: 2014-02-01

Огромное Вам спасибо! Для заочной формы обучения такой материал - отличное подспорье. И здорово, что рассмотрены три проекции, тк в моем задании требуется построить фронтальную, горизонтальную, профильную проекции + натуральную величину сечения.

Автор комментария: Алла
Дата: 2014-02-03

Спасибо огромное за ваше время и такой доступный материал, столько всего перелопатила, а результата ноль. Я очень рада , что попала на ваш сайт , теперь ваша страничка у меня в избранном, прям как палочка-выручалочка. Кстати после завтра экзамен, задание схожее только с разными вырезами. Я думаю начерчу без проблем. Еще раз СПАСИБО!!!

Добавьте свой комментарий:

Введите сумму чисел с картинки:

Последние уроки

Построение линии пересечения конуса и плоскости

Сечение цилиндра наклонной плоскостью

Мой первый чертеж. Часть третья. Простой разрез детали

Наша почта:

zakaz@trivida.ru

Если есть смартфон:

Инженерная графика и начертательная геометрия. Наши контакты

Случайный комментарий

Александра:

Люди порою сильно спешат, и не успевают говорить спасибо. Антон, вспомнила про вас, хотя чертежи с вашей помощью сдала более полугода назад. А ведь поначалу думала, что инженерная графика и чертежи для меня - неподъемная наука. Но по мере выполнения работ, слушая ваши комментарии, я очень даже разобралась, и даже сама вычертила зачетное задание. Вы приятный человек - и это сильно в плюс тем, кому довелось с вами сотрудничать. Желаю вам благодарных студентов :) Александра Р., МГУПИ

Александра, спасибо за ваш рассказ и пожелания! Ради того и работаем :) Всего вам наилучшего!



MorozArt Studio © 2005 • 2011 • Москва • Удаленная работа
При публикации статей с сайта активная ссылка на оригинал обязательна.